

National Weather Service Western Region

and

University of Utah

Collaborative N-Wave Effort

Mike Doney, NOAA/NWS/WR Steve Corbato', University of Utah

May 11, 2011 Boulder, CO

Agenda

NWS Western Region

University of Utah

Opportunity for Collaboration

Why is N-Wave important for WR?

Benefits, Plans and Opportunities

National Weather Service - Western Region (WR)

Mission and Focus

- Protection of Life and Property
- Decision Support Services

WR Challenges

- Wide range of environs
- Sparse RADAR coverage due to mountainous terrain
- Bandwidth Challenged

Serving 8 Western States via

- 24 Forecast Offices
- 3 River Forecast Centers
- 4 Central Wx Service Units
- 708 Employees

Weather Impacts in NWS/WR

Simplified WR Network

- Sub-optimal paths to NOAA data resources
- Does not scale
- Cost-limited

Joint Proposal to NOAA

- Partner with Univ. of Utah to attach to NOAA N-Wave network
 - Fiber infrastructure
 - Gigabit Ethernet to WRH
 - Gigabit Ethernet to SLC/CBRFC
- Research Partners / Science Drivers
 - NOAA's ESRL/GSD for ingest of 3km HRRR data, and 30km FIM data
 - NOAA's NSSL for testing of real-time NMQ/Q2 Flash Flood prediction
- Value to NOAA and NWS/WR
 - Timing and Cost Avoidance
 - WR becomes better connected
 - Empowers NOAA Research to Operations
 - Applied Research and Prototyping

Steve Corbató

Director, Cyberinfrastructure,
University Information Technology
Adjunct Faculty, School of Computing
University of Utah

Opportunity for Collaboration

Proposed WRH N-Wave Architecture

May 2011

Why is N-Wave important for WR?

Strategic Opportunity

- Will enable (faster) Technology Transfer from NOAA Research to WR
- Will provide improved access to: Models, Data Centers, HPC Resources
- Positions WR for better connectivity to important Regional Networks and key N-Wave agencies:

ESRL, NSSL, SPC, PMEL, GFDL, NCDC, NCEP

- Does not replace OPSnet, but supplements Operational connectivity

Timing is important

- American Recovery and Reinvestment Act funds are available (for now)
- Opportunity to partner with Univ. of Utah/UEN for fiber build-out (SLC fiber installation summer 2011; UofU Data Center live January 2012)
- Utah Transit Authority TRAX line expansion

Short-Term Wins

- The High-Resolution Rapid Refresh (HRRR)
 The HRRR is a 3-km resolution, hourly updated, cloud-resolving atmospheric model, initialized by DFI-fields from the 13km radar-enhanced Rapid Refresh run at NOAA/ESRL/GSD.
- HRRR is designed to provide rapidly updated model guidance on convective storms for
 - Air traffic management
 - Severe weather forecasting
 - NOAA National Weather Service Warn-On Forecast

Anticipated Benefits to WR

- Enable full model downloads to WRH; distribute select fields to region
- Simulated RADAR important for sparse observations in WR
- Usage: Flash Flood Guidance (AZ), SuperCell Storms (MT)
- 15 minute data for FireWx Forecasts, Hazardous Chemical releases

Short-Term Wins

The Flow-following/Finite-volume Icosahedral Model (FIM)

A new 30 km global weather prediction model currently under development in the Global Systems Division of NOAA/ESRL

2m Temperature

Precipitable Water

Wind

Total 5-day Accumulated Precip

Short-Term Wins

 NMQ/Q2 continues NSSL's departure from radar-centric precipitation estimation and moves toward a multi-sensor approach focused on high-resolution integration of radar, satellite, model, and surface observations to produce very high-resolution precipitation estimates.

Mid-Term Plans

- NextGen Position WR to integrate NextGen
 Air Transportation System
- Climate Partner Regional Climate Director w/GFDL and ORNL researchers
- Observations Investigate feasibility of UDOT streaming video with WFO/SLC
- Strengthen the NWS-Utah R&E meteorological community in support of NWS's focus on providing decision support services

Long-Term Opportunities

- > High-speed connectivity to Western Regional Center in Seattle
- > Collaborative research with Alaska and Pacific Regions
- Integrate with other federal partnerships, eg NOAA's Integrated Water
 Resources Science and Services (IWRSS) USGS and US Army Corps of Eng.

"A man does not plant a tree for himself; he plants it for posterity."
--Alexander Smith,
Scottish poet

Summary

NOAA's N-Wave research network is an opportunity for NWS Western Region to obtain significant benefits in

- applied research and science
- network connectivity to NOAA resources, and
- R&E partnerships

This is a logical extension of N-Wave: to reach two new NOAA sites with unique requirements and capabilities for enhancing NOAA Research to Operations

Collaboration with the University of Utah makes the scalable IT infrastructure possible for establishing N-Wave access in Salt Lake City – that will lead to improvements in the science and service NWS provides to WR communities

Thank you